The scalar triple product

The scalar product and the vector product may be combined into the scalar triple product (or mixed product):

$$
([a, b], c)=(a \times b) \cdot c
$$

Theorem: Given three vectors $\boldsymbol{a}=\left\{a_{x}, a_{y}, a_{z}\right\}, \boldsymbol{b}=\left\{b_{x}, b_{y}, b_{z}\right\}$ and $\boldsymbol{c}=\left\{c_{x}, c_{y}, c_{z}\right\}$ in some rectangular coordinate system, the scalar triple product is defined by the formula

$$
(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \tag{9}\\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|
$$

Proof: Carrying out the scalar product of the vectors

$$
\boldsymbol{a} \times \boldsymbol{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \boldsymbol{i}+\left(a_{z} b_{x}-a_{x} b_{x}\right) \boldsymbol{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \boldsymbol{k}
$$

and

$$
\boldsymbol{c}=c_{x} \boldsymbol{i}+c_{y} \boldsymbol{j}+c_{z} \boldsymbol{k}
$$

we obtain

$$
\begin{aligned}
(\boldsymbol{a} \times \boldsymbol{b}) \cdot c=\left(a_{y} b_{z}-a_{z} b_{y}\right) & c_{x}+\left(a_{z} b_{x}-a_{x} b_{x}\right) c_{y}+\left(a_{x} b_{y}-a_{y} b_{x}\right) c_{z} \\
& =\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|
\end{aligned}
$$

Geometric Interpretation. The absolute value of the number $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}$ is the volume of a parallelepiped formed by the vectors $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} as it is shown in the figure below.

By the theorem of scalar product,

$$
(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=|\boldsymbol{a} \times \boldsymbol{b}| \cdot|\boldsymbol{c}| \cos \varphi .
$$

The quantity $|\boldsymbol{a} \times \boldsymbol{b}|$ equals the area of the parallelogram, and the product $|\boldsymbol{c}| \cos \varphi$ equals the height of the parallelepiped.

Corollary 1: If three vectors are coplanar then the scalar triple product is equal to zero.
Corollary 2: Four points A, B, C, and D lie in the same plane, if the scalar triple product $(\overrightarrow{A B} \times \vec{A} C) \overrightarrow{A D}$ is equal to zero.

Consider the scalar triple product $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})$.

1) By the properties of the scalar product, $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{b} \times \boldsymbol{c}) \cdot \boldsymbol{a}$.
2) In view of the properties of determinants,

$$
\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|=\left|\begin{array}{ccc}
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
a_{x} & a_{y} & a_{z}
\end{array}\right| .
$$

Therefore, $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}$.
Since the order of the dot and cross symbols is meaningless, the product $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})$ is simply denoted by $\boldsymbol{a b c}$.
Using the properties of determinants it is not difficult to see that

$$
\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}=\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|=\left|\begin{array}{ccc}
c_{x} & c_{y} & c_{z} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|=\left|\begin{array}{ccc}
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
a_{x} & a_{y} & a_{z}
\end{array}\right| .
$$

Therefore,

$$
a b c=c a b=b c a
$$

Likewise,

$$
\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|=-\left|\begin{array}{ccc}
b_{x} & b_{y} & b_{z} \\
a_{x} & a_{y} & a_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|=-\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
c_{x} & c_{y} & c_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|
$$

and so

$$
a b c=-b a c=-a c b
$$

In view of the theorem of linear dependent vectors, any three linear dependent vectors are coplanar. Hence,

The triple product of non-zero vectors equals zero, if and only if the vectors are linear dependent.

1) Determine whether the points $A(-1,2,2), B(3,3,4), C(2,-2,10)$, and $D(0,2,2)$ lie on the same plane.
Solution: Join the point A with the other points to obtain the vectors

$$
\boldsymbol{a}=\overrightarrow{A B}=\{4,1,2\}, \quad \boldsymbol{b}=\overrightarrow{A C}=\{3,4,8\}, \quad \text { and } \quad \boldsymbol{c}=\overrightarrow{A D}=\{1,0,0\}
$$

Find the scalar triple product:

$$
\boldsymbol{a b c}=\left|\begin{array}{lll}
4 & 1 & 2 \\
3 & 4 & 8 \\
1 & 0 & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 2 \\
4 & 8
\end{array}\right|=0
$$

Therefore, the vectors lie in a plane, that means the given points lie in the same plane.
2) Find the volume V of the tetrahedron with the vertices at the points $A(1,0,2), B(3,-1,4), C(1,5,2)$, and $D(4,4,4)$.
Solution: Consider a parallelepiped whose adjacent vertices are at the given points.
The volume V_{p} of the parallelepiped is equal to the absolute value of the triple scalar product of the vectors $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{A D}$.
The volume of the tetrahedron is given by the formula $V=\frac{1}{6} V_{p}$.

Since

$$
\overrightarrow{A B}=\{2,-1,2\}, \quad \overrightarrow{A C}=\{0,5,0\}, \quad \text { and } \quad \overrightarrow{A D}=\{3,4,2\},
$$

we obtain

$$
\overrightarrow{A B} \overrightarrow{A C} \overrightarrow{A D}=\left|\begin{array}{ccc}
2 & -1 & 2 \\
0 & 5 & 0 \\
3 & 4 & 2
\end{array}\right|=5\left|\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right|=10
$$

Therefore,

$$
V=\frac{10}{6}=\frac{5}{3} .
$$

3) The tetrahedron is given by the vertices $A(1,0,2), B(3,-1,4)$, $C(1,5,2)$, and $D(4,4,4)$.
Find the height from the point D to the base $A B C$.

Solution: In view of the formula

$$
V=\frac{1}{3} S \cdot h
$$

where h is the height from the point D, we need to know the volume V of the tetrahedron and the area S of the base $A B C$ to find h.
According to Example 2, the volume of the tetrahedron equals $5 / 3$.
The area of the triangle $A B C$ can be found just in a similar way as in Example 2, section 1.5.2:

$$
\begin{gathered}
A=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|, \\
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
2 & -1 & 2 \\
0 & 5 & 0
\end{array}\right|=10 \boldsymbol{i}-10 \boldsymbol{k}, \quad|\overrightarrow{A B} \times \overrightarrow{A C}|=10 \sqrt{2} .
\end{gathered}
$$

Therefore,

$$
h=\frac{3 V}{A}=\frac{5}{5 \sqrt{2}}=\frac{\sqrt{2}}{2}
$$

